

The Oxyfuel Research Rig at E.ON New Build & Technology

David Couling Coal Research Forum AGM and Combustion Division Meeting Drax, April 2012

Contents

1. Introduction

- 2. Combustion Test Facility (CTF)
- 3. Corrosion
- 4. Oxyfuel Coals and Projects
- 5. Plant Start Up and Emissions
- 6. Other Findings
- 7. Questions

1. Introduction

- Process Engineer
- E.ON 2006-
- Combustion, flue gas cleaning, oxyfuel
- R&D and Engineering projects

1. Introduction - ENT

- Mission is to add value to the E.ON group via operational support, by supporting the new build program and in the future by research, development and innovation.
- ~1100 employees +
- 2 main office locations

Technology Centre, Nottingham, UK

 \leftarrow

Humboldt-Forum Gelsenkirchen, Germany

Introduction - ENT 1.

- Outage & Maintenance
 Plant Performance
- Materials & Engineering
 Flexible Operation
- Pressure Parts
- Power Plant Chemistry Biomass Fuels
- Turbines
- Power Engineering

Services

- Electrical Engineering
- Networks
- Fuel Sciences
- Emission Monitoring
- Pollution Abatement

- - Life Extension

 - Gas Turbine
 - Optimisation
 - Steam Turbine
 - Performance
 - Business Modelling
 - Stimulator Training
 - Systems
 - New Build Optimisation
 Emission Modelling
 - Nuclear Development CCS

- Risk Management
- Plant Status Review
- Maintenance Strategy
- Due Diligence
- Owner's Engineer
- Quality Assurance
- Sustainable Energy
- Technology
- Development
- Project Management

New Technologies

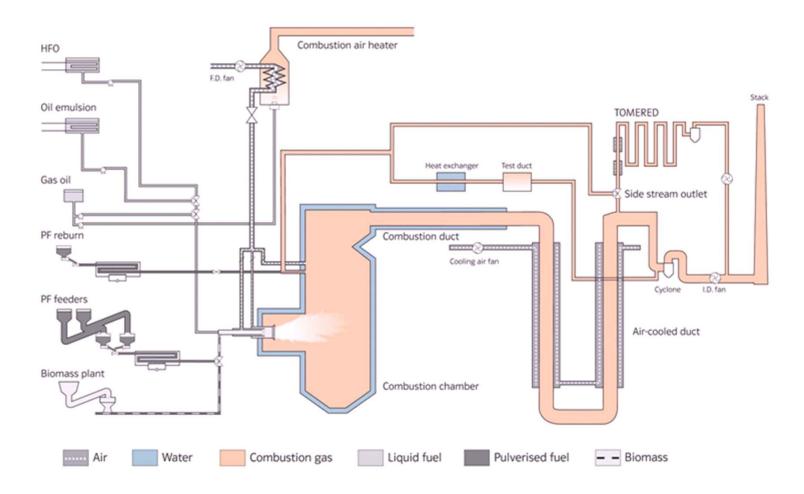
2. 1MWth Combustion Test Facility

- Design and Planning in 1980's with commissioning in early 1990's
- Located at Ratcliffe on soar, Nottingham, England
- Time-temperature scaled to simulate full scale plant
- Fuel flexible Coal, biomass, oil, orimulsion, gas, additives, others
- Full combustion staging; overfire air, reburn
- Highly instrumented and controllable
- Other capabilities added such as TOMERED
- Graduated update to oxyfuel capability with FGR from 2006
- 100[,]s data points auto logged (X, T, P, F...)
- Used to study fuel quality effects on combustion, emissions, slagging, fouling and corrosion. Research in LN combustion, atomisers, combustion additives, trace emissions, instrumentation, oxyfuel combustion, biomass co-firing and 100% firing, ash behaviour, heat flux....

2. 1MWth Combustion Test Facility

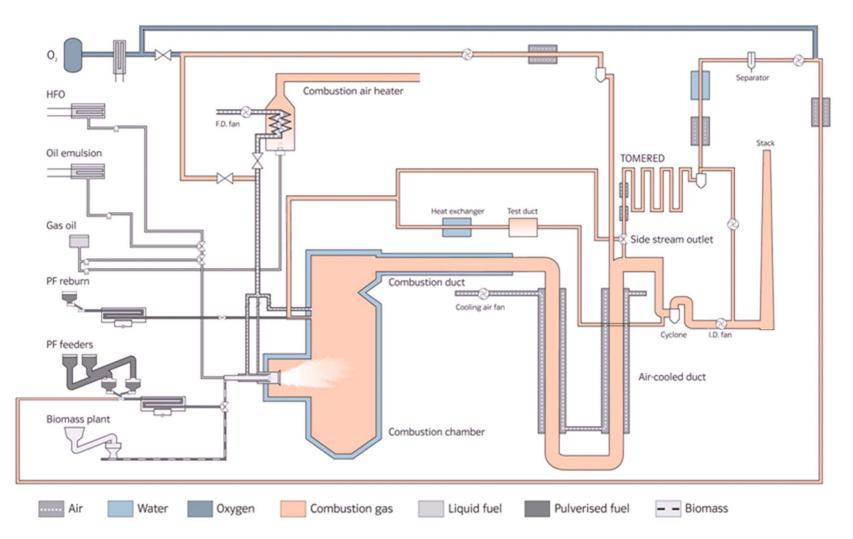
Original Schematic Depicting Physical Layout CONVECTION CONTROL ROOM PF SCREW CONVEYOR EXHAUST STACK PF SUPPLY PIPEWORK AND HEATER SIDE STREAM RIG NORTH -----..... and an o 10.004 0.04 ID FAN FD FAN COMBUSTION BURNER SECONDARY AIR HEATER PF FEEDER

2. CTF Data


Thermal input	$1 \text{ MW}_{\text{th}} \text{ (0.8} - 1.2 \text{MW}_{\text{th}} \text{)}$
Furnace	Horizontally fired, refractory lined, water
	cooled, balanced draft
Dimensions	1m x 1m x 3m
Burner	Scaled MBEL Mk III Low-NO _x
Windbox temp.	300 to 330°C
Primary air temp.	80°C (70 to 90°C)
Tertiary : secondary	3.5:1 (1:1 to 7:1)
Overfire air	15% (0 to 25%)
Flue gas cleanup	High efficiency cyclone

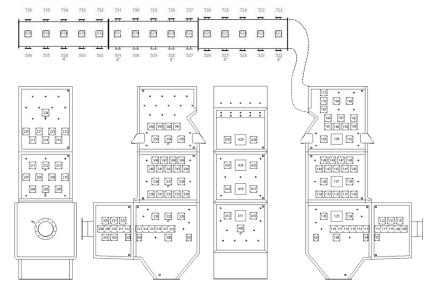
2. CTF History and Milestones

 Commissioned 	1993
 At commissioning switch to include LNB 	1993
 Coal reburning added 	1996
Lignite firing	1997
 Fuel logistics upgrade 	1997
 Biomass co-firing 	2002
 On-line PF blending 	2002
 100% biomass firing 	2004
TOMERED loop	2005
 Oxyfuel commissioning 	2006
 Oxyfuel system upgrade 	2009

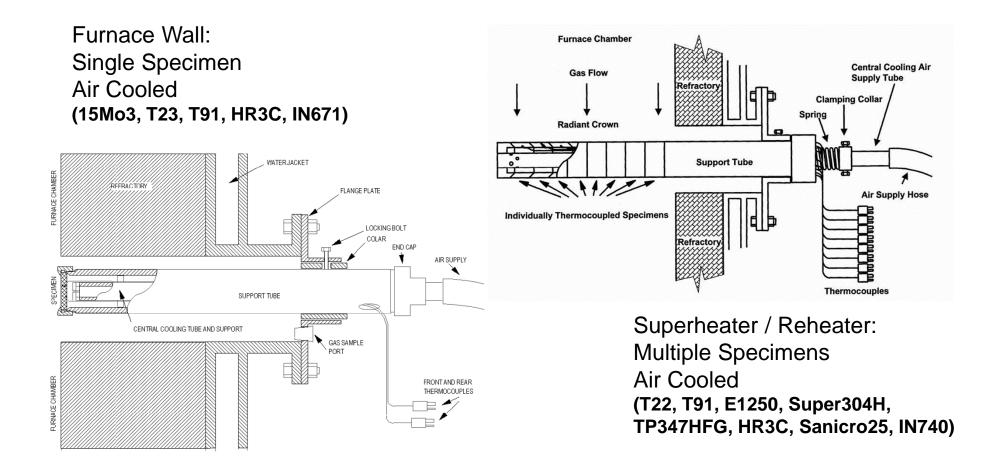


2. CTF Diagram Pre Oxy

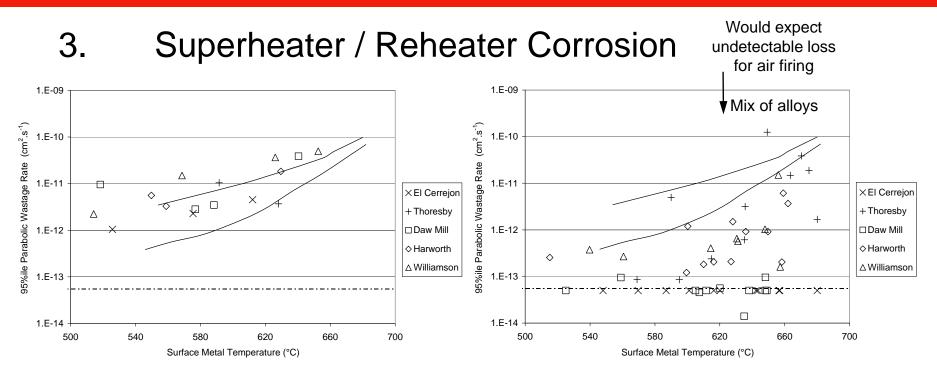
2. CTF Diagram Post Oxy



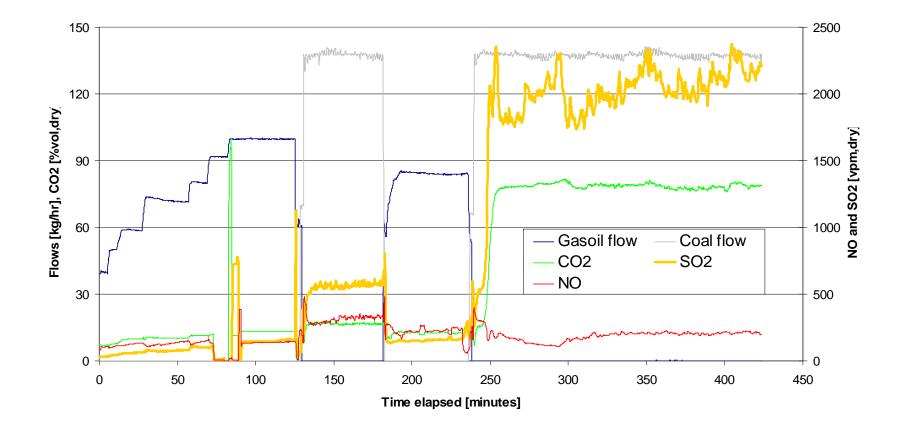
2. CTF Pictures



3. Precision Metrology Corrosion Probes


- Metal Losses Determined Using Digital Image Analysis On Polished Cross Sections
- Optical & Electron Microscopy Used to Characterise Damage & Mechanisms
- Multiple port allow simultaneous testing of all important corrosion variables; tube material, metal temperature, gas environment (reducing, oxidising) and heat flux

3. Precision Metrology Corrosion Probes


- Comparison With T22 Pilot Scale Data Air Coal Firing
- Left Oxy-Fuel Firing T22 Data Broadly Similar Or Slightly Elevated Rates
- Right Oxy-Fuel Firing Austenitic Data Wide Range Responses

Cleaner Coals & Lower Heat Flux: Little Or No Attack Dirty Coals (Higher CI In Particular & High Heat Flux: Increased Wastage Rates – Occasionally Greater Than T22 Wastage Rates

4. Oxyfuel Coals and Projects

- Coals fired in oxyfuel
 - Kleinkopje (SA), El Cerrejon (Col.), Tselentis (SA), Thoresby, Daw Mill, Harworth, Williamson (USA), Cutacre.
 - Corrosion coals S (0.6% 3%+), Cl (0.02% 0.45%)
- Projects
 - ASSOCOGS (RFCS)
 - Supplier burner testing
 - Oxycoal I (DTI)
 - "OxySOx" (TSB)
 - Oxycoal II HFCCAT programme (TSB)
 - Project H0639C (TSB)
 - ASPECT (TSB)

5. Plant Start Up and Emissions

6. Other Findings

- Safe start up, change over and operation demonstrated
- Early, low O2 enrichment tests demonstrated poorer combustion (CO, LOI, flame detachment) compared to air firing
- More recent higher enrichment tests have shown similar to better combustion compared to than air (CO, LOI)
- High levels of CO2 in the fluegas (80%+ dry) possible
- Similar/slight increase in conc. of NOx
- Increased conc. of SO2 by factor of 3-4
- Reduced mass rates of SO2 and NO (mg/MJ fuel)
- Similar ash composition but with increased S and trace elements
- Evidence of increased superheater / reheater corrosion rates for austenitic stainless steels and nickel based alloys.
- More complex operation and control expanded system with feedback loops.

7. Close and Questions

- Any follow on question feel free to contact me
- David.couling@eon.com
- 02476 192724